Extensions 1→N→G→Q→1 with N=C32 and Q=C3×D7

Direct product G=N×Q with N=C32 and Q=C3×D7
dρLabelID
D7×C33189D7xC3^3378,53

Semidirect products G=N:Q with N=C32 and Q=C3×D7
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×D7) = He3⋊D7φ: C3×D7/C7C6 ⊆ Aut C32636+C3^2:(C3xD7)378,38
C322(C3×D7) = D7×He3φ: C3×D7/D7C3 ⊆ Aut C32636C3^2:2(C3xD7)378,30
C323(C3×D7) = C32×D21φ: C3×D7/C21C2 ⊆ Aut C32126C3^2:3(C3xD7)378,55
C324(C3×D7) = C3×C3⋊D21φ: C3×D7/C21C2 ⊆ Aut C32126C3^2:4(C3xD7)378,57

Non-split extensions G=N.Q with N=C32 and Q=C3×D7
extensionφ:Q→Aut NdρLabelID
C32.(C3×D7) = D7×3- 1+2φ: C3×D7/D7C3 ⊆ Aut C32636C3^2.(C3xD7)378,31
C32.2(C3×D7) = C9×D21φ: C3×D7/C21C2 ⊆ Aut C321262C3^2.2(C3xD7)378,37
C32.3(C3×D7) = D7×C3×C9central extension (φ=1)189C3^2.3(C3xD7)378,29

׿
×
𝔽